Robust PCA neural networks for random noise reduction of the data

نویسندگان

  • Stanislaw Osowski
  • Andrzej Majkowski
  • Andrzej Cichocki
چکیده

The paper presents principal component analysis (PCA) approach to the reduction of noise contaminating the data. The PCA performs the role of lossy compression and decompression. The compression/decompression provides the means of coding the data and then recovering it with some losses, dependent on the realized compression ratio. In this process some part of information contained in the data is lost. When the loss tolerance is equal to the noise strength, the noise and the loss tolerance are augmented and the decompressed signal is deprived of noise. This way of noise ltering has been checked on the examples of 1-dimensional and 2-dimensional data and the results of numerical experiments have been included in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

Use of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method

Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...

متن کامل

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS 1 Optimal Linear Compression Under UnreliableRepresentation and Robust PCA Neural

| In a typical linear data compression system the representation variables resulting from the coding operation are assumed totally reliable and therefore the solution in the mean-squared-error sense is an orthogonal projector to the so-called principal component subspace. When the representation variables are contaminated by additive noise which is uncorrelated with the signal, the problem is c...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997